jamaibase - v0.5.0

jamai-logo

JamAI

www.jamaibase.com

This is a TS/JS Client Library for JamAIBase.

GitHub | Documentation | TS/JS API Documentation | Issues | NPM Package

JamAI Base

JamAI Base Cover

Table of Contents

Overview

Welcome to JamAI Base – the real-time database that orchestrates Large Language Models (LLMs) for you. Designed to simplify AI integration, JamAI Base offers a Backend as a Service (BaaS) platform with an intuitive, spreadsheet-like interface. Focus on defining your data requirements through natural language prompts, and let us handle the complexities of RAG, LLMOps, conversation histories, and LLM orchestration.

Key Benefits

Ease of Use

  • Interface: Simple, intuitive spreadsheet-like interface.
  • Focus: Define data requirements through natural language prompts.

Scalability

  • Foundation: Built on LanceDB, an open-source vector database designed for AI workloads.
  • Performance: Serverless design ensures optimal performance and seamless scalability.

Flexibility

  • LLM Support: Supports any LLMs, including OpenAI GPT-4, Anthropic Claude 3, and Meta Llama3.
  • Capabilities: Leverage state-of-the-art AI capabilities effortlessly.

Declarative Paradigm

  • Approach: Define the "what" rather than the "how."
  • Simplification: Simplifies complex data operations, making them accessible to users with varying levels of technical expertise.

Innovative RAG Techniques

  • Effortless RAG: Built-in RAG features, no need to build the RAG pipeline yourself.
  • Query Rewriting: Boosts the accuracy and relevance of your search queries.
  • Hybrid Search & Reranking: Combines keyword-based search, structured search, and vector search for the best results.
  • Structured RAG Content Management: Organizes and manages your structured content seamlessly.
  • Adaptive Chunking: Automatically determines the best way to chunk your data.
  • BGE M3-Embedding: Leverages multi-lingual, multi-functional, and multi-granular text embeddings for free.

Key Features

Generative Tables

Transform static database tables into dynamic, AI-enhanced entities.

  • Dynamic Data Generation: Automatically populate columns with relevant data generated by LLMs.
  • Built-in REST API Endpoint: Streamline the process of integrating AI capabilities into applications.

Action Tables

Facilitate real-time interactions between the application frontend and the LLM backend.

  • Real-Time Responsiveness: Provide a responsive AI interaction layer for applications.
  • Automated Backend Management: Eliminate the need for manual backend management of user inputs and outputs.
  • Complex Workflow Orchestration: Enable the creation of sophisticated LLM workflows.

Knowledge Tables

Act as repositories for structured data and documents, enhancing the LLM's contextual understanding.

  • Rich Contextual Backdrop: Provide a rich contextual backdrop for LLM operations.
  • Enhanced Data Retrieval: Support other generative tables by supplying detailed, structured contextual information.
  • Efficient Document Management: Enable uploading and synchronization of documents and data.

Chat Tables

Simplify the creation and management of intelligent chatbot applications.

  • Intelligent Chatbot Development: Simplify the development and operational management of chatbots.
  • Context-Aware Interactions: Enhance user engagement through intelligent and context-aware interactions.
  • Seamless Integration: Integrate with Retrieval-Augmented Generation (RAG) to utilize content from any Knowledge Table.

LanceDB Integration

Efficient management and querying of large-scale multi-modal data.

  • Optimized Data Handling: Store, manage, query, and retrieve embeddings on large-scale multi-modal data efficiently.
  • Scalability: Ensure optimal performance and seamless scalability.

Declarative Paradigm

Focus on defining "what" you want to achieve rather than "how" to achieve it.

  • Simplified Development: Allow users to define relationships and desired outcomes.
  • Non-Procedural Approach: Eliminate the need to write procedures.
  • Functional Flexibility: Support functional programming through LLMs.

Installation

npm install jamaibase@latest

Getting Started

The recommended way of using JamAI Base is via Cloud 🚀. Did we mention that you can get free LLM tokens?

Cloud 🚀

  1. First, sign up for a free account on JamAI Base Cloud!

  2. Create a project and give it any name that you want.

  3. Get your API credentials:

  4. Install the package:

    npm install jamaibase
    
  5. In your script, import the JamAI class and create an instance:

    import JamAI from "jamaibase";

    const jamai = new JamAI({
    token: "your_pat",
    projectId: "your_project_id"
    });

OSS

  1. Clone the repository:

    git clone https://github.com/EmbeddedLLM/JamAIBase.git
    cd JamAIBase
  2. Modify the configuration to suit your needs:

    • services/api/src/owl/configs/models.json specifies all the available models.
    • .env specifies which model to run on the infinity service for locally-hosted embedding and reranking models.
    • .env also specifies all the third party API keys to be used.

    For OSS mode, in order for you to see and use other third party models such as OpenAI, you need to provide your own OpenAI API key in .env file (refer to .env.example file).

  3. Launch the Docker containers by running one of these:

    # CPU-only
    docker compose -f docker/compose.cpu.yml up --quiet-pull -d

    # With NVIDIA GPU
    docker compose -f docker/compose.nvidia.yml up --quiet-pull -d
    • By default, frontend and backend are accessible at ports 4000 and 6969.
    • You can change the ports exposed to host by setting env var in .env or shell like so API_PORT=6968 FRONTEND_PORT=4001 docker compose -f docker/compose.cpu.yml up --quiet-pull -d
  4. Try the command below in your terminal, or open your browser and go to localhost:4000.

    curl localhost:6969/api/v1/models
    
  5. To use the TypeScript SDK, install jamaibase:

    npm install jamaibase
    
  6. In your script, import the JamAI class and create an instance:

    • baseURL should point to the exposed port of owl service.
    import JamAI from "jamaibase";

    const jamai = new JamAI({
    baseURL: "http://localhost:6969/api"
    });

Configuration Tips

projectId, token (API key), and baseURL can be configured in multiple ways (from highest priority to least priority):

  • Passing it as arguments when creating the client instance
  • Specifying it as environment variable named JAMAI_PROJECT_ID, JAMAI_API_KEY and JAMAI_API_BASE respectively
  • Specifying it in .env file as JAMAI_PROJECT_ID, JAMAI_API_KEY and JAMAI_API_BASE respectively
import JamAI from "jamaibase";

// Cloud
const client = new JamAI({ projectId: "...", token: "..." });
console.log(client.baseURL);

// OSS
const client = new JamAI({ baseURL: "..." });
console.log(client.baseURL);

Usage

Create API Client

Create an API client with baseURL:

import JamAI from "jamaibase";

const jamai = new JamAI({ baseURL: "http://localhost:5173/" });

Create an API client with api key and project id:

import JamAI from "jamaibase";

const jamai = new JamAI({ token: "jamai_pat", projectId: "proj_id" });

Create an API client with custom HTTP client:

import axios from "axios";
import JamAI from "jamaibase";

const username = "user";
const password = "password";

const credentials = Buffer.from(`${username}:${password}`).toString("base64");

const httpClient = axios.create({
headers: {
Authorization: `Basic ${credentials}`,
"Content-Type": "application/json"
}
});

const jamai = new JamAI({
baseURL: "https://api.jamaibase.com",
httpClient: httpClient
});

Create an API client with maxRetry and timeout:

import JamAI from "jamaibase";

const jamai = new JamAI({
baseURL: "https://api.jamaibase.com",
maxRetries: 3,
timeout: 500
});

Configure httpAgent/httpsAgent:

import JamAI from "jamaibase";

const jamai = new JamAI({
baseURL: "https://api.jamaibase.com"
});

jamai.setHttpagentConfig({
maxSockets: 100,
maxFreeSockets: 10,
freeSocketTimeout: 30000 // free socket keepalive for 30 seconds
});

Types

Types can be imported from resources:

import { ChatRequest } from "jamaibase/resources/llm/chat";

let response: ChatRequest;

Generative Tables (Basics)

There are 3 types of Generative Tables:

  • Action: For chaining LLM reasoning steps
  • Knowledge: For embedding external knowledge and files to power Retrieval Augmented Generation (RAG)
  • Chat: For LLM agents with LLM chaining capabilities

We will guide you through the steps of leveraging Generative Tables to unleash the full potential of LLMs.

Creating Tables

Let's start with creating simple tables. Create a table by defining a schema.

[!NOTE] When it comes to table names, there are some restrictions:

  • Must have at least 1 character and up to 100 characters
  • Must start and end with an alphabet or number
  • Middle characters can contain alphabets, numbers, underscores _, dashes -, dots .

Column names have almost the same restrictions, except that:

  • Spaces are accepted
  • Dots . are not accepted
  • Cannot be called "ID" or "Updated at" (case-insensitive)
// Create an Action Table
const actionTable = await jamai.table.createActionTable({
id: "action-simple",
cols: [
{ id: "image", dtype: "image" }, // Image input
{ id: "length", dtype: "int" }, // Integer input
{ id: "question", dtype: "str" },
{
id: "answer",
dtype: "str",
gen_config: {
model: "openai/gpt-4o-mini", // Leave this out to use a default model
system_prompt: "You are a concise assistant.",
prompt: "Image: ${image}\n\nQuestion: ${question}\n\nAnswer the question in ${length} words.",
temperature: 0.001,
top_p: 0.001,
max_tokens: 100
}
}
]
});
console.log(actionTable);

// Create a Knowledge Table
const knowledgeTable = await jamai.table.createKnowledgeTable({
id: "knowledge-simple",
cols: [],
embedding_model: "ellm/BAAI/bge-m3"
});
console.log(knowledgeTable);

// Create a Chat Table
const chatTable = await jamai.table.createChatTable({
id: "chat-simple",
cols: [
{ id: "User", dtype: "str" },
{
id: "AI",
dtype: "str",
gen_config: {
model: "openai/gpt-4o-mini", // Leave this out to use a default model
system_prompt: "You are a pirate.",
temperature: 0.001,
top_p: 0.001,
max_tokens: 100
}
}
]
});
console.log(chatTable);

Adding Rows

Now that we have our tables, we can start adding rows to them and receive the LLM responses.

First let's try adding to Action Table:

const textA = 'Summarize this: "Arrival" is a 2016 science fiction drama film directed by Denis Villeneuve and adapted by Eric Heisserer.';
const textB = 'Summarize this: "Dune: Part Two is a 2024 epic science fiction film directed by Denis Villeneuve."';
const textC = "Identify the subject of the image.";

// --- Action Table --- //
// Streaming
const streamCompletion = await jamai.table.addRowStream({
table_type: "action",
table_id: "action-simple",
data: [{ length: 5, question: textA }]
});

const reader = streamCompletion.getReader();
while (true) {
const { done, value } = await reader.read();
if (done) break;
if (value) {
console.log(value?.choices[0]?.message.content);
}
}

// Non-streaming
const completion = await jamai.table.addRow({
table_type: "action",
table_id: "action-simple",
data: [{ length: 5, question: textB }],
concurrent: false
});
console.log(completion.rows[0].columns["answer"].text);

// Streaming (with image input)
const uploadResponse = await jamai.file.uploadFile({
file_path: "path/to/rabbit.jpeg"
});
const streamWithImage = await jamai.table.addRowStream({
table_type: "action",
table_id: "action-simple",
data: [{ image: uploadResponse.uri, length: 5, question: textC }]
});

const imageReader = streamWithImage.getReader();
while (true) {
const { done, value } = await imageReader.read();
if (done) break;
console.log(value?.choices[0]?.message.content);
}

Next let's try adding to Chat Table:

// --- Chat Table --- //
// Streaming
const chatStream = await jamai.table.addRowStream({
table_type: "chat",
table_id: "chat-simple",
data: [{ User: "Who directed Arrival (2016)?" }]
});

const chatReader = chatStream.getReader();
while (true) {
const { done, value } = await chatReader.read();
if (done) break;
console.log(value?.choices[0]?.message.content);
}

// Non-streaming
const chatCompletion = await jamai.table.addRow({
table_type: "chat",
table_id: "chat-simple",
data: [{ User: "Who directed Dune (2024)?" }],
concurrent: false
});
console.log(chatCompletion.rows[0].columns["AI"].text);

Finally we can add rows to Knowledge Table too:

[!TIP] Uploading files is the main way to add data into a Knowledge Table. Having said so, adding rows works too!

// --- Knowledge Table --- //
// Streaming
const ktStream = await jamai.table.addRowStream({
table_type: "knowledge",
table_id: "knowledge-simple",
data: [{ Title: "Arrival (2016)", Text: textA }]
});

const ktReader = ktStream.getReader();
while (true) {
const { done } = await ktReader.read();
if (done) break;
}

// Non-streaming
const ktCompletion = await jamai.table.addRow({
table_type: "knowledge",
table_id: "knowledge-simple",
data: [{ Title: "Dune (2024)", Text: textB }],
concurrent: false
});

Retrieving Rows

We can retrieve table rows by listing the rows or by fetching a specific row.

// --- List rows -- //
// Action
const actionRows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple"
});
// Paginated items
for (const row of actionRows.items) {
console.log(row["ID"], row["answer"]["value"]);
}

// Knowledge
const ktRows = await jamai.table.listRows({
table_type: "knowledge",
table_id: "knowledge-simple"
});
for (const row of ktRows.items) {
console.log(row["ID"], row["Title"]["value"]);
console.log(row["Title Embed"]["value"].slice(0, 3)); // Knowledge Table has embeddings
}

// Chat
const chatRows = await jamai.table.listRows({
table_type: "chat",
table_id: "chat-simple"
});
for (const row of chatRows.items) {
console.log(row["ID"], row["User"]["value"], row["AI"]["value"]);
}

// --- Fetch a specific row -- //
const row = await jamai.table.getRow({
table_type: "chat",
table_id: "chat-simple",
row_id: chatRows.items[0]["ID"]
});
console.log(row["ID"], row["AI"]["value"]);

// --- Filter using a search term -- //
const filteredRows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple",
search_query: "Dune"
});
for (const row of filteredRows.items) {
console.log(row["ID"], row["answer"]["value"]);
}

// --- Only fetch specific columns -- //
const specificCols = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple",
columns: ["length"]
});
for (const row of specificCols.items) {
// "ID" and "Updated at" will always be fetched
console.log(row["ID"], row["length"]["value"]);
}

Retrieving Tables

We can retrieve tables by listing the tables or by fetching a specific table.

// --- List tables -- //
// Action
const actionTables = await jamai.table.listTables({
table_type: "action",
count_rows: true
});
// Paginated items
for (const table of actionTables.items) {
console.log(`${table.id}, ${table.num_rows}`);
}

// Knowledge
const ktTables = await jamai.table.listTables({
table_type: "knowledge"
});
for (const table of ktTables.items) {
console.log(`${table.id}, ${table.num_rows}`);
}

// Chat
const chatTables = await jamai.table.listTables({
table_type: "chat"
});
for (const table of chatTables.items) {
console.log(`${table.id}, ${table.num_rows}`);
}

// --- Fetch a specific table -- //
const specificTable = await jamai.table.getTable({
table_type: "action",
table_id: "action-simple"
});
console.log(`${specificTable.id}, ${specificTable.num_rows}`);

Deleting Rows

Now that you know how to add rows into tables, let's see how to delete them instead.

// Get all rows
const rows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple"
});

// Delete all rows
const response = await jamai.table.deleteRows({
table_type: "action",
table_id: "action-simple",
row_ids: rows.items.map(row => row["ID"])
});
console.log(response.ok); // true

// Assert that the table is empty
const emptyRows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple"
});
console.log(emptyRows.items.length); // 0

Deleting Tables

Let's see how to delete tables.

[!TIP] Deletion will return "OK" even if the table does not exist.

// Delete tables
let response = await jamai.table.deleteTable({
table_type: "action",
table_id: "action-simple"
});
console.log(response.ok); // true

response = await jamai.table.deleteTable({
table_type: "knowledge",
table_id: "knowledge-simple"
});
console.log(response.ok); // true

response = await jamai.table.deleteTable({
table_type: "chat",
table_id: "chat-simple"
});
console.log(response.ok); // true

We can combine this with the table list method to delete all tables without having to specify their names:

const batchSize = 100;
const tableTypes = ["action", "knowledge", "chat"];

for (const tableType of tableTypes) {
let offset = 0;
let total = 1;

while (offset < total) {
const tables = await jamai.table.listTables({
table_type: tableType,
offset: offset,
limit: batchSize
});

for (const table of tables.items) {
await jamai.table.deleteTable({
table_type: tableType,
table_id: table.id
});
}

total = tables.total;
offset += batchSize;
}
}

Generative Tables (Advanced)

Duplicating Tables

We can create copies of tables under the same project. By default, the method copies over both table schema and its data, but we can choose to exclude data when duplicating.

// By default, both schema (like generation config) and data are included
const duplicateTable = await jamai.table.duplicateTable({
table_type: "action",
table_id_src: "action-simple",
table_id_dst: "action-simple-copy",
include_data: true
});
console.log(duplicateTable.id); // "action-simple-copy"

const rows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple-copy"
});
console.log(rows.total > 0); // true

// We can also duplicate a table without its data
const schemaOnlyTable = await jamai.table.duplicateTable({
table_type: "action",
table_id_src: "action-simple",
table_id_dst: "action-simple-schema-only",
include_data: false
});
console.log(schemaOnlyTable.id); // "action-simple-schema-only"

const emptyRows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple-schema-only"
});
console.log(emptyRows.total); // 0

Renaming Tables

Tables can be renamed while preserving all their data and configuration.

// Rename an Action Table
const renamedTable = await jamai.table.renameTable({
table_type: "action",
table_id_src: "action-simple",
table_id_dst: "action-renamed"
});
console.log(renamedTable.id); // "action-renamed"

// Rename a Knowledge Table
const renamedKT = await jamai.table.renameTable({
table_type: "knowledge",
table_id_src: "knowledge-simple",
table_id_dst: "knowledge-renamed"
});
console.log(renamedKT.id); // "knowledge-renamed"

Column Management

You can add, rename, reorder, and drop columns from tables.

// Add columns to Action Table
const updatedTable = await jamai.table.addActionColumns({
id: "action-simple",
cols: [
{ id: "new_column", dtype: "str" }
]
});

// Rename columns
const renamedCols = await jamai.table.renameColumns({
table_type: "action",
table_id: "action-simple",
column_map: {
question: "renamed_question"
}
});

// Reorder columns
const reorderedTable = await jamai.table.reorderColumns({
table_type: "action",
table_id: "action-simple",
column_names: ["renamed_question", "answer", "new_column"]
});

// Drop columns
const reducedTable = await jamai.table.dropColumns({
table_type: "action",
table_id: "action-simple",
column_names: ["new_column"]
});

// Update generation config
const updatedGenConfig = await jamai.table.updateGenConfig({
table_type: "action",
table_id: "action-simple",
column_map: {
answer: {
model: "openai/gpt-4o-mini",
system_prompt: "Updated system prompt"
}
}
});

Updating Rows

Update existing row data in tables.

// Add some rows first
const addedRows = await jamai.table.addRow({
table_type: "action",
table_id: "action-simple",
data: [
{ question: "What is penguin?" },
{ question: "What is help?" }
],
concurrent: true
});

// List rows to get row IDs
const rows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple",
limit: 2
});

const rowId = rows.items[0]["ID"];

// Update a specific row
const updateResponse = await jamai.table.updateRows({
table_type: "action",
table_id: "action-simple",
data: {
[rowId]: {
question: "How to update rows on jamaibase?",
answer: "References at https://embeddedllm.github.io/jamaibase-ts-docs/"
}
}
});
console.log(updateResponse.ok); // true

Regenerating Rows

Regenerate LLM outputs for existing rows.

// Add rows
await jamai.table.addRow({
table_type: "action",
table_id: "action-simple",
data: [
{ question: "What is penguin?" },
{ question: "What is help?" }
],
concurrent: true
});

// List rows to get row IDs
const rows = await jamai.table.listRows({
table_type: "action",
table_id: "action-simple"
});

const rowIds = rows.items.map(item => item["ID"]);

// Regenerate rows (non-streaming)
const regenResponse = await jamai.table.regenRow({
table_type: "action",
table_id: "action-simple",
row_ids: rowIds,
concurrent: true
});

// Regenerate rows (streaming)
const regenStream = await jamai.table.regenRowStream({
table_type: "action",
table_id: "action-simple",
row_ids: rowIds,
concurrent: true
});

const regenReader = regenStream.getReader();
while (true) {
const { done, value } = await regenReader.read();
if (done) break;
console.log(value);
}

Hybrid Search

Perform hybrid search combining keyword-based and vector search.

// Add rows with searchable content
await jamai.table.addRow({
table_type: "action",
table_id: "action-simple",
data: [
{ question: "What is penguin?" },
{ question: "What is help?" },
{ question: "What is kong?" }
],
concurrent: true
});

// Perform hybrid search
const searchResults = await jamai.table.hybridSearch({
table_type: "action",
table_id: "action-simple",
query: "kong",
limit: 3,
metric: "dot",
reranking_model: null
});

for (const result of searchResults.items) {
console.log(result);
}

Import/Export Data

Import and export table data in CSV or TSV format.

// Export table data to CSV
const csvData = await jamai.table.exportTableData({
table_type: "action",
table_id: "action-simple"
});
// csvData is a Uint8Array containing CSV data

// Export table data to TSV
const tsvData = await jamai.table.exportTableData({
table_type: "action",
table_id: "action-simple",
delimiter: "\t"
});

// Import table data from CSV file
const importResponse = await jamai.table.importTableData({
file_path: "/path/to/data.csv",
table_id: "action-simple",
table_type: "action"
});
console.log(importResponse.rows.length);

// Import table data with streaming
const importStream = await jamai.table.importTableDataStream({
file_path: "/path/to/data.csv",
table_id: "action-simple",
table_type: "action"
});

const importReader = importStream.getReader();
while (true) {
const { done, value } = await importReader.read();
if (done) break;
console.log(value);
}

Retrieval Augmented Generation (RAG)

We can upload files to Knowledge Table for Retrieval Augmented Generation (RAG). This allows LLM to generate answers that are grounded in the provided context and data.

import { File } from "formdata-node";

// Create a Knowledge Table
const ktTable = await jamai.table.createKnowledgeTable({
id: "knowledge-rag",
cols: [],
embedding_model: "ellm/BAAI/bge-m3"
});

// Upload a file to the Knowledge Table
const file = new File(["I bought a Mofusand book in 2024.\n\nI went to Italy in 2018."], "text.txt", {
type: "text/plain"
});

const embedResponse = await jamai.table.embedFile({
file: file,
table_id: "knowledge-rag"
});
console.log(embedResponse.ok); // true

// Create an Action Table with RAG
const ragTable = await jamai.table.createActionTable({
id: "action-rag",
cols: [
{ id: "question", dtype: "str" },
{
id: "answer",
dtype: "str",
gen_config: {
model: "openai/gpt-4o-mini",
system_prompt: "You are a concise assistant.",
prompt: "${question}",
rag_params: {
table_id: "knowledge-rag",
k: 2
},
temperature: 0.001,
top_p: 0.001,
max_tokens: 100
}
}
]
});

// Ask a question with streaming
const ragStream = await jamai.table.addRowStream({
table_type: "action",
table_id: "action-rag",
data: [{ question: "Where did I go in 2018?" }]
});

const ragReader = ragStream.getReader();
while (true) {
const { done, value } = await ragReader.read();
if (done) break;
console.log(value?.choices[0]?.message.content);
}

LLM Operations

Chat Completions

Generate chat completions using various models. Supports streaming and non-streaming modes.

// Streaming
const streamRequest = {
model: "openai/gpt-4o-mini",
messages: [
{ role: "system", content: "You are a concise assistant." },
{ role: "user", content: "What is a llama?" }
],
temperature: 0.001,
top_p: 0.001,
max_tokens: 10
};

const completionStream = await jamai.llm.generateChatCompletionsStream(streamRequest);
const llmReader = completionStream.getReader();
while (true) {
const { done, value } = await llmReader.read();
if (done) break;
console.log(value?.choices[0]?.delta?.content);
}

// Non-streaming
const request = {
model: "openai/gpt-4o-mini",
messages: [
{ role: "system", content: "You are a concise assistant." },
{ role: "user", content: "What is a llama?" }
],
temperature: 0.001,
top_p: 0.001,
max_tokens: 10
};

const completion = await jamai.llm.generateChatCompletions(request);
console.log(completion.choices[0].message.content);

Embeddings

Generate embeddings for given input text.

const texts = ["What is love?", "What is a llama?"];

const embeddings = await jamai.llm.generateEmbeddings({
model: "ellm/BAAI/bge-m3",
type: "document",
input: texts
});

// Inspect one of the embeddings
console.log(embeddings.data[0].embedding.slice(0, 3));

// Print the text and its embedding
for (let i = 0; i < texts.length; i++) {
console.log(texts[i], embeddings.data[i].embedding.slice(0, 3));
}

Model Information

Retrieve information about available models.

// Get all model info
const models = await jamai.llm.modelInfo();
const model = models.data[0];
console.log(`Model: ${model.id} Context length: ${model.context_length}`);

// Get specific model info
const specificModel = await jamai.llm.modelInfo({
model: "openai/gpt-4o"
});
console.log(specificModel.data[0]);

// Filter based on capability: "chat", "embed", "rerank", "image"
const chatModels = await jamai.llm.modelInfo({
capabilities: ["chat"]
});
for (const model of chatModels.data) {
console.log(model);
}

const embedModels = await jamai.llm.modelInfo({
capabilities: ["embed"]
});
for (const model of embedModels.data) {
console.log(model);
}

const rerankModels = await jamai.llm.modelInfo({
capabilities: ["rerank"]
});
for (const model of rerankModels.data) {
console.log(model);
}

// Get model IDs/names
const modelNames = await jamai.llm.modelNames();
console.log(modelNames);

// Model IDs with the preferred model at the top if available
const preferredModels = await jamai.llm.modelNames({
prefer: "openai/gpt-4o"
});
console.log(preferredModels[0]);

// Filter based on capability
const chatModelNames = await jamai.llm.modelNames({
capabilities: ["chat"]
});
console.log(chatModelNames);

File Management

Upload and manage files for use in tables and LLM inputs.

// Upload a file by file path
const uploadResponse = await jamai.file.uploadFile({
file_path: "/path/to/image.png"
});
console.log(uploadResponse.uri);

// Get raw URLs for uploaded files
const rawUrls = await jamai.file.getRawUrls({
uris: [uploadResponse.uri]
});
console.log(rawUrls);

// Get thumbnail URLs for uploaded images
const thumbUrls = await jamai.file.getThumbUrls({
uris: [uploadResponse.uri]
});
console.log(thumbUrls);

// Upload audio file
const audioUpload = await jamai.file.uploadFile({
file_path: "/path/to/audio.mp3"
});
console.log(audioUpload.uri);

Organizations & Projects

Organizations

Manage organizations, members, and organization-level settings.

// Create organization
const org = await jamai.organizations.createOrganization({
name: "My Organization"
});
console.log(org.id, org.name);

// List organizations
const orgs = await jamai.organizations.listOrganizations({});
for (const org of orgs.items) {
console.log(org.id, org.name);
}

// List organizations with pagination
const paginatedOrgs = await jamai.organizations.listOrganizations({
limit: 10,
offset: 0
});

// Get specific organization
const specificOrg = await jamai.organizations.getOrganization(org.id);
console.log(specificOrg);

// Update organization
const updatedOrg = await jamai.organizations.updateOrganization(org.id, {
name: "Updated Organization Name"
});
console.log(updatedOrg.name);

// Delete organization
const deleteResponse = await jamai.organizations.deleteOrganization(org.id);
console.log(deleteResponse.ok); // true

// List organization members
const members = await jamai.organizations.listMembers(org.id, {});
for (const member of members.items) {
console.log(member.user_id, member.role);
}

// Get specific member
const currentUser = await jamai.users.getUser();
const member = await jamai.organizations.getMember(currentUser.id, org.id);
console.log(member.role);

// Get model catalogue for organization
const catalogue = await jamai.organizations.modelCatalogue(org.id, {});
for (const model of catalogue.items) {
console.log(model.id);
}

// Create organization invite
const invite = await jamai.organizations.createInvite({
user_email: "user@example.com",
organization_id: org.id,
role: "MEMBER",
valid_days: 7
});
console.log(invite.id);

// List organization invites
const invites = await jamai.organizations.listInvites(org.id, {});
for (const invite of invites.items) {
console.log(invite.user_email, invite.role);
}

// Revoke organization invite
const revokeResponse = await jamai.organizations.revokeInvite(invite.id);
console.log(revokeResponse.ok); // true

// Refresh organization quota
const refreshedOrg = await jamai.organizations.refreshQuota(org.id);
console.log(refreshedOrg.quota_reset_at);

Projects

Manage projects within organizations.

// Create project
const project = await jamai.projects.createProject({
organization_id: org.id,
name: "My Project"
});
console.log(project.id, project.name);

// List projects
const projects = await jamai.projects.listProjects(org.id, {});
for (const project of projects.items) {
console.log(project.id, project.name);
}

// List projects with pagination
const paginatedProjects = await jamai.projects.listProjects(org.id, {
limit: 10,
offset: 0
});

// Get specific project
const specificProject = await jamai.projects.getProject(project.id);
console.log(specificProject);

// Update project
const updatedProject = await jamai.projects.updateProject(project.id, {
name: "Updated Project Name",
description: "Updated description"
});
console.log(updatedProject.name, updatedProject.description);

// Delete project
const deleteProjectResponse = await jamai.projects.deleteProject(project.id);
console.log(deleteProjectResponse.ok); // true

// List project members
const projectMembers = await jamai.projects.listMembers(project.id, {});
for (const member of projectMembers.items) {
console.log(member.user_id, member.role);
}

// Get specific project member
const projectMember = await jamai.projects.getMember(currentUser.id, project.id);
console.log(projectMember.role);

// Create project invite
const projectInvite = await jamai.projects.createInvite({
user_email: "user@example.com",
project_id: project.id,
role: "MEMBER",
valid_days: 7
});
console.log(projectInvite.id);

// List project invites
const projectInvites = await jamai.projects.listInvites(project.id, {});
for (const invite of projectInvites.items) {
console.log(invite.user_email, invite.role);
}

// Revoke project invite
const revokeProjectInvite = await jamai.projects.revokeInvite(projectInvite.id);
console.log(revokeProjectInvite.ok); // true

// Export project
const exportData = await jamai.projects.exportProject(project.id);
// exportData is a Uint8Array containing the exported project data
console.log(exportData.length);

Users & Authentication

Manage user accounts and authentication.

// Get current user
const currentUser = await jamai.users.getUser();
console.log(currentUser.id, currentUser.name, currentUser.email);

// List users
const users = await jamai.users.listUsers({});
for (const user of users.items) {
console.log(user.id, user.name);
}

// List users with pagination
const paginatedUsers = await jamai.users.listUsers({
limit: 10,
offset: 0
});

// Update current user
const updatedUser = await jamai.users.updateUser({
name: "Updated Name"
});
console.log(updatedUser.name);

// Create personal access token (PAT)
const pat = await jamai.users.createPat({
name: "My API Token"
});
console.log(pat.id, pat.name);

// List personal access tokens
const pats = await jamai.users.listPats({});
for (const token of pats.items) {
console.log(token.id, token.name);
}

// Update personal access token
const updatedPat = await jamai.users.updatePat(pat.id, {
name: "Updated Token Name"
});
console.log(updatedPat.name);

// Delete personal access token
const deletePat = await jamai.users.deletePat(pat.id);
console.log(deletePat.ok); // true

// Create email verification code
const verificationCode = await jamai.users.createEmailVerificationCode();
console.log(verificationCode.id);

// List email verification codes
const codes = await jamai.users.listEmailVerificationCodes({});
for (const code of codes.items) {
console.log(code.id);
}

// Get specific email verification code
const specificCode = await jamai.users.getEmailVerificationCode(verificationCode.id);
console.log(specificCode);

// Revoke email verification code
const revokeCode = await jamai.users.revokeEmailVerificationCode(verificationCode.id);
console.log(revokeCode.ok); // true

Secrets Management

Manage secrets and API keys at the organization level.

// Create secret
const secret = await jamai.secrets.createSecret(
{
name: "MY_API_KEY",
value: "secret-value-here"
},
org.id
);
console.log(secret.name, secret.organization_id);

// Create secret with allowed projects
const secretWithProjects = await jamai.secrets.createSecret(
{
name: "PROJECT_API_KEY",
value: "secret-value",
allowed_projects: [project.id]
},
org.id
);

// List secrets
const secrets = await jamai.secrets.listSecrets(org.id, {});
for (const secret of secrets.items) {
console.log(secret.name, secret.value); // value is masked
}

// List secrets with pagination
const paginatedSecrets = await jamai.secrets.listSecrets(org.id, {
limit: 10,
offset: 0
});

// Get specific secret
const specificSecret = await jamai.secrets.getSecret(org.id, "MY_API_KEY");
console.log(specificSecret.value); // value is masked

// Update secret
const updatedSecret = await jamai.secrets.updateSecret(org.id, "MY_API_KEY", {
value: "new-secret-value"
});
console.log(updatedSecret.value); // value is unmasked on update

// Delete secret
const deleteSecret = await jamai.secrets.deleteSecret(org.id, "MY_API_KEY");
console.log(deleteSecret.ok); // true

[!NOTE] Secret names must:

  • Start with a letter or underscore
  • Contain only alphanumeric characters and underscores
  • Be uppercase (automatically converted)

Conversations

Manage conversations with AI agents (Chat Tables).

// Create a chat table (agent) first
const agent = await jamai.table.createChatTable({
id: "my-agent",
cols: [
{ id: "User", dtype: "str" },
{
id: "AI",
dtype: "str",
gen_config: {
model: "openai/gpt-4o-mini",
system_prompt: "You are a helpful assistant."
}
}
]
});

// Create a conversation
const conversationStream = await jamai.conversations.createConversation({
agent_id: "my-agent",
title: "My Conversation",
data: {}
});

// Read the stream to get conversation ID
const convReader = conversationStream.getReader();
let conversationId: string | null = null;

while (true) {
const { done, value } = await convReader.read();
if (done) break;

if (value && "conversation_id" in value) {
conversationId = value.conversation_id as string;
break;
}
}

// List conversations
const conversations = await jamai.conversations.listConversations({
agent_id: "my-agent"
});
for (const conv of conversations.items) {
console.log(conv.id, conv.title);
}

// Get specific conversation
const conversation = await jamai.conversations.getConversation(conversationId);
console.log(conversation.title);

// Update conversation
const updatedConv = await jamai.conversations.updateConversation(conversationId, {
title: "Updated Title"
});
console.log(updatedConv.title);

// Continue conversation
const continueStream = await jamai.conversations.continueConversation({
conversation_id: conversationId,
data: { User: "Hello, how are you?" }
});

const continueReader = continueStream.getReader();
while (true) {
const { done, value } = await continueReader.read();
if (done) break;
console.log(value);
}

// Delete conversation
const deleteConv = await jamai.conversations.deleteConversation(conversationId);
console.log(deleteConv.ok); // true

Framework Examples

React JS

To integrate JamAI into a React application, follow these steps:

  1. Install React and Create a New Project
    npx create-react-app my-app
cd my-app
  1. Install jamai
    npm install jamaibase
  1. Create and Use the JamAI Client in your React component
// App.tsx

import { useEffect, useState } from "react";
import JamAI from "jamaibase";
import { PageListTableMetaResponse } from "jamaibase/resources/gen_tables/tables";

export default function Home() {
const [tableData, setTableData] = useState<PageListTableMetaResponse>();

useEffect(() => {
const fetchData = async () => {
const jamai = new JamAI({
baseURL: process.env.NEXT_PUBLIC_JAMAI_BASEURL!,
token: process.env.JAMAI_API_KEY,
projectId: process.env.JAMAI_PROJECT_ID,
});
try {
const response = await jamai.table.listTables({
table_type: "action",
});
setTableData(response);
} catch (err: any) {
console.error(err.message);
}
};
fetchData();
}, []);

return (
<div>
<h1>List of Tables</h1>
<ul>
{tableData?.items.map((table) => (
<li key={table.id}>
<h2>Table ID: {table.id}</h2>
<h3>Columns:</h3>
<ul>
{table.cols.map((column) => (
<li key={column.id}>
<p>ID: {column.id}</p>
<p>Data Type: {column.dtype}</p>
</li>
))}
</ul>
</li>
))}
</ul>
</div>
);
}

Next JS

To integrate JamAI into a Next.js application, follow these steps:

  1. Install Next.js and Create a New Project
    npx create-next-app@latest
cd (path/to/your/app)
  1. Install jamaibase
    npm install jamaibase
  1. Generate API Key -> Go to cloud.jamaibase.com/organization/secrets and collect API Key

  2. Collect Project ID -> Go to cloud.jamaibase.com/project and copy the project id.

  3. Create .env.local file at the root of your project and add the keys:

NEXT_PUBLIC_JAMAI_BASEURL=http://api.jamaibase.com/
JAMAI_API_KEY=your_jamai_sk_api_key
JAMAI_PROJECT_ID=your_proj_id
  1. Create a route handler to fetch data.
// src/app/api/list-tables/route.ts
import JamAI from "jamaibase";
import {
PageListTableMetaResponse,
TableTypes,
} from "jamaibase/resources/gen_tables/tables";
import { NextRequest, NextResponse } from "next/server";

const jamai = new JamAI({
baseURL: process.env.NEXT_PUBLIC_JAMAI_BASEURL!,
token: process.env.JAMAI_API_KEY,
projectId: process.env.JAMAI_PROJECT_ID,
});

export async function GET(request: NextRequest) {
const searchParams = request.nextUrl.searchParams;
const tableType = (searchParams.get("type") || "action") as TableTypes;

try {
let data: PageListTableMetaResponse = await jamai.table.listTables({
table_type: tableType,
});
return NextResponse.json(data);
} catch (error: any) {
console.error("Error fetching tables:", error.response);
return NextResponse.json(
{ message: "Internal server error" },
{ status: 500 }
);
}
}
  1. Then, in your Next.js component, you can fetch this data from the API route and render it:
// src/app/page.tsx

"use client";

import { PageListTableMetaResponse } from "jamaibase/resources/gen_tables/tables";
import { ChangeEvent, useEffect, useState } from "react";

export default function Home() {
const [tableData, setTableData] = useState<PageListTableMetaResponse>();
const [tableType, setTableType] = useState("action");

const handleTableTypeChange = (e: ChangeEvent<HTMLSelectElement>) => {
setTableType(e.target.value);
};

useEffect(() => {
const fetchData = async () => {
console.log("fetch data");
const response = await fetch(`/api/list-tables?type=${tableType}`);
if (response.ok) {
const data: PageListTableMetaResponse = await response.json();
setTableData(data);
} else {
console.error("Failed to fetch data:", response.statusText);
}
};
fetchData();
}, [tableType]);

return (
<main className="flex min-h-screen flex-col p-24">
<div className="max-w-sm mx-auto my-10 p-5 bg-white rounded-lg shadow-md">
<label className="block text-sm font-medium text-gray-700 mb-2">
Choose Table Type:
</label>
<select
value={tableType}
onChange={handleTableTypeChange}
className="block w-full py-2 px-3 border border-gray-300 bg-white rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm text-black"
>
<option value="action">Action</option>
<option value="chat">Chat</option>
<option value="knowledge">Knowledge</option>
</select>
</div>

<div className="space-y-6">
<h1 className="text-4xl">List of Tables</h1>
<table className="min-w-full divide-y divide-gray-200">
<thead className="bg-gray-50">
<tr>
<th className="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">
Table ID
</th>
<th className="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">
Columns
</th>
<th className="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">
Column Type
</th>
<th className="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">
Number of Rows
</th>
</tr>
</thead>
<tbody className="bg-white divide-y divide-gray-300 text-black">
{tableData?.items.map((table) => (
<tr key={table.id}>
<td className="px-6 py-4 whitespace-nowrap">
{table.id}
</td>
<td className="px-6 py-4 whitespace-nowrap">
<ul className="space-y-2">
{table.cols.map((column) => (
<li className="" key={column.id}>
<span>{column.id}: </span>
<span>{column.dtype}</span>
</li>
))}
</ul>
</td>
<td className="px-6 py-4 whitespace-nowrap">
<ul className="space-y-2">
{table.cols.map((column) => (
<li className="" key={column.id}>
<span>
{column.gen_config
? "Output"
: "Input"}
</span>
</li>
))}
</ul>
</td>
<td className="px-6 py-4 whitespace-nowrap">
{table.num_rows}
</td>
</tr>
))}
</tbody>
</table>
</div>
</main>
);
}
  1. Start the app
npm run dev

SvelteKit

  1. Setup SvelteKit Project
npm create svelte@latest jamai-example-app
cd jamai-example-app
npm install
  1. Install JamAI
npm i jamaibase
  1. Generate API Key -> Go to cloud.jamaibase.com/organization/secrets and collect API Key

  2. Collect Project ID -> Go to cloud.jamaibase.com/project and copy the project id.

  3. Create .env file at the root of your project and add the keys:

PUBLIC_JAMAI_BASEURL=http://api.jamaibase.com/
JAMAI_API_KEY=your_jamai_sk_api_key
JAMAI_PROJECT_ID=your_proj_id
  1. Create a new file src/routes/create-table/+page.svelte and add the following code:
<script>
<script lang="ts">
export let form;
</script>

<main>
<h1>Create Action Table</h1>

{#if form?.success}
<p>Successfully created the table.</p>
{/if}
{#if !form?.success}
<p>Sorry, something went wrong!</p>
{/if}

<form method="POST" action="/create-table">
<label>
Table ID
<input name="table_id" />
</label>
<label>
Column Name
<input name="column_name" />
</label>
<label>
Column Data Type
<select name="column_d_type">
<option value="str">str</option>
<option value="int">int</option>
<option value="float">float</option>
<option value="bool">bool</option>
</select>
</label>
<button type="submit">Create</button>
</form>
</main>
  1. Create a form action in the +page.server.ts file in the same path to accept post data from the form.
import JamAI from "jamaibase";
import { fail } from "@sveltejs/kit";
import { PUBLIC_JAMAI_URL } from "$env/static/public";
import { JAMAI_API_KEY, JAMAI_PROJECT_ID } from "$env/static/private";

const jamai = new JamAI({
baseURL: PUBLIC_JAMAI_URL,
token: JAMAI_API_KEY,
projectId: JAMAI_PROJECT_ID,
});

export const actions = {
default: async ({ request }) => {

type DTypes = "float" | "int" | "bool" | "str" | undefined;

const data = await request.formData();
const tableId = data.get("table_id")?.toString();
const columnName = data.get("column_name")?.toString();
const columnDType = data.get("column_d_type")?.toString() as DTypes;

console.log("data: ", data);
try {
const response = await jamai.table.createActionTable({
id: tableId!,
cols: [{ id: columnName!, dtype: columnDType! }],
});

return { success: true, data: response };
} catch (error) {
console.error(error);
fail(500, { message: "Something went wrong!" });
}
},
};
  1. Start the app
npm run dev

Nuxt

  1. Setup Nuxt Project
npx nuxi init jamai-example-app
cd jamai-example-app
npm install
  1. Install JamAI
npm i jamaibase
  1. Collect the secrets:
  1. Create .env file at the root of your project and add the keys:
PUBLIC_JAMAI_BASEURL=http://api.jamaibase.com/
JAMAI_API_KEY=your_jamai_sk_api_key
JAMAI_PROJECT_ID=your_proj_id
  1. In the nuxt.config.ts file, add runtimeConfig to use the environment variables:
runtimeConfig: {
JAMAI_API_KEY: process.env.JAMAI_API_KEY,
public: {
JAMAI_BASEURL: process.env.JAMAI_BASEURL,
JAMAI_PROJECT_ID: process.env.JAMAI_PROJECT_ID,
},
},
  1. Create a new file /pages/index.vue and add the following code:
<template>
<main>
<div class="container">
<label>Choose Table Type:</label>
<select v-model="tableType" @change="fetchTables">
<option value="action">Action</option>
<option value="chat">Chat</option>
<option value="knowledge">Knowledge</option>
</select>
</div>

<div class="container">
<h1>List of Tables</h1>
<table>
<thead>
<tr>
<th>Table ID</th>
<th>Columns</th>
<th>Column Type</th>
<th>Number of Rows</th>
</tr>
</thead>
<tbody>
<tr v-for="table in tableData.items" :key="table.id">
<td>{{ table.id }}</td>
<td>
<ul>
<li v-for="column in table.cols" :key="column.id">{{ column.id }}: {{ column.dtype }}</li>
</ul>
</td>
<td>
<ul>
<li v-for="column in table.cols" :key="column.id">{{ column.gen_config ? "Output" : "Input" }}</li>
</ul>
</td>
<td>{{ table.num_rows }}</td>
</tr>
</tbody>
</table>
</div>
</main>
</template>

<script setup>
import { ref, onMounted } from "vue";

const tableType = ref("action");
const tableData = ref({ items: [] });

async function fetchTables() {
const response = await $fetch(`/api/list-tables?type=${tableType.value}`);

if (response.success) {
tableData.value = response.data;
} else {
console.error("Failed to fetch data");
}
}

onMounted(() => {
fetchTables();
});
</script>
  1. Create a server handler at server/api/list-tables.js and add the following code:
import JamAI from "jamaibase";

const {
JAMAI_API_KEY,
public: { JAMAI_BASEURL, JAMAI_PROJECT_ID }
} = useRuntimeConfig();

const jamai = new JamAI({
baseURL: JAMAI_BASEURL,
token: JAMAI_API_KEY,
projectId: JAMAI_PROJECT_ID
});

export default defineEventHandler(async (event) => {
const { type = "action" } = getQuery(event);

try {
const data = await jamai.table.listTables({ table_type: type });
return { success: true, data: data };
} catch (error) {
console.error("Error fetching tables:", error);
return { success: false, data: "Something went wrong" };
}
});
  1. Start the app
npm run dev

Constructor Parameters for APIClient Configuration

Parameter Type Description Default Value Required / Optional
baseURL string Base URL for the API requests. https://api.jamaibase.com optional
maxRetries number Maximum number of retries for failed requests. 0 Optional
httpClient AxiosInstance Axios instance for making HTTP requests. AxiosInstance Optional
timeout number | undefined Timeout for the requests. undefined Optional
token string | undefined API token (Personal Access Token). undefined Required if accessing cloud
projectId string | undefined Project ID. undefined Optional if accessing cloud
dangerouslyAllowBrowser boolean Allowing the insecure usage of JamAI API Key on client side. false Optional if accessing cloud